

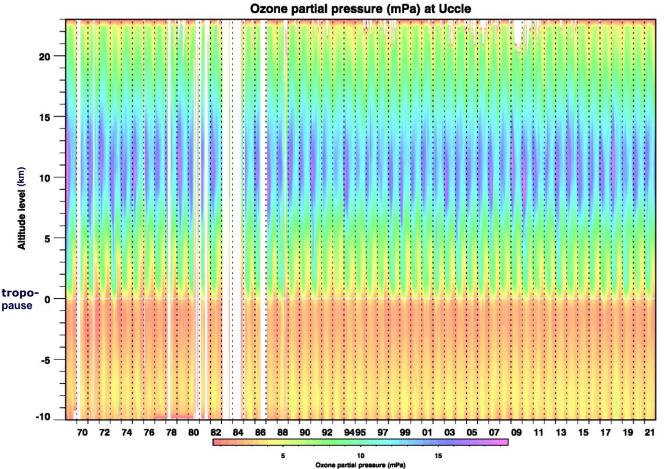
50 years of balloonborne ozone profile measurements at Uccle, Belgium

Koninklijk Meteorologisch Instituut Institut Royal Météorologique Königliches Meteorologisches Institut

Royal Meteorological Institute

R. Van Malderen¹, H. De Backer¹, D. De Muer¹, D. Poyraz¹, W. Verstraeten¹, V. De Bock¹, A. Delcloo¹, A. Mangold¹, Q. Laffineur¹, M. Allaart², F. Fierens³, V. Thouret⁴.

¹Royal Meteorological Institute, Belgium

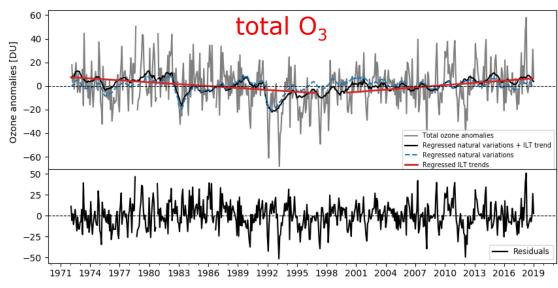

² Koninklijk Nederlands Meteorologisch instituut, the Netherlands

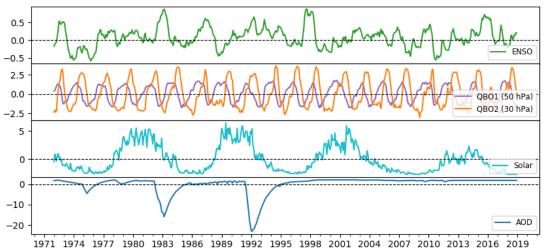
³ Belgian Interregional Environment Agency, Belgium

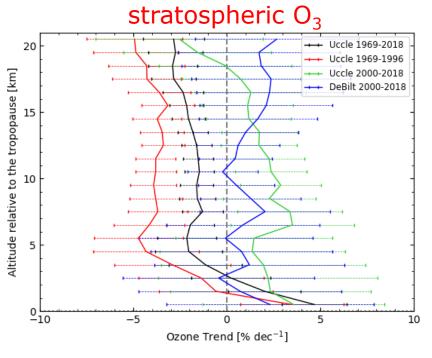
⁴Université de Toulouse, France

The site

- Uccle, a suburb south of Brussels, Belgium (50°48'N, 4°21'E; 100 m asl)
- environmental changes (SO₂) → corrected!

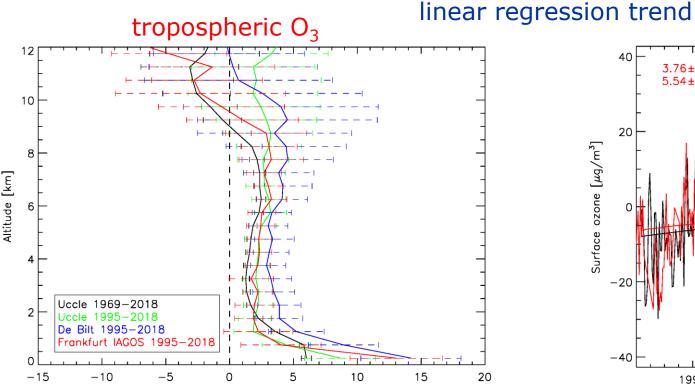


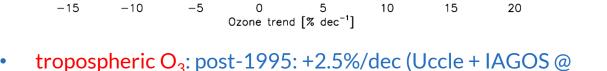

- launch frequency: 3 times a week
- started January 1969 with Brewer-Mast (B/M) sensors
- changed to Z-ECC sensors in 1997
- → homogenized with PRESsure and Temperature dependent total Ozone normalization method (PRESTO), based on dual soundings + pump efficiency measurements in pressure chamber



Trends: total ozone & stratosphere

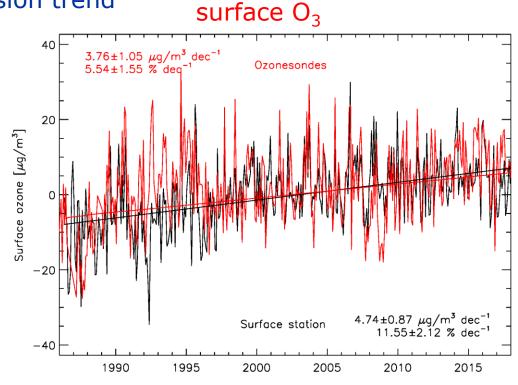
LOTUS MLR trend model





- total O₃ from Dobson#40+Brewer#16+Brewer#178 pre-1997: -1.6%/dec, post-2000: +1.9%/dec
 - full recovery?!
- stratospheric O3: pre-1997: -4%/dec, post-2000: +1 to +3%/dec
 - no full recovery
 - higher post-2000 recovery than nearby (175 km) De Bilt (The Netherlands), except at higher altitudes.

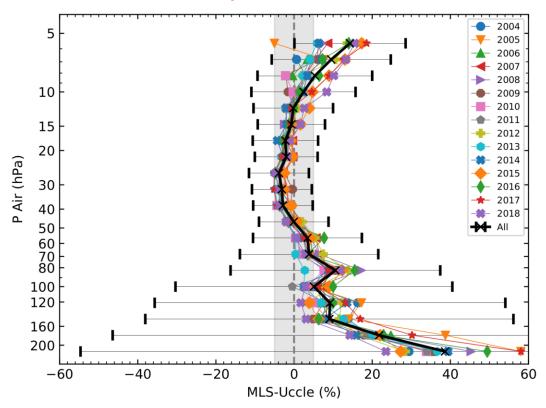
Trends: tropospheric & surface



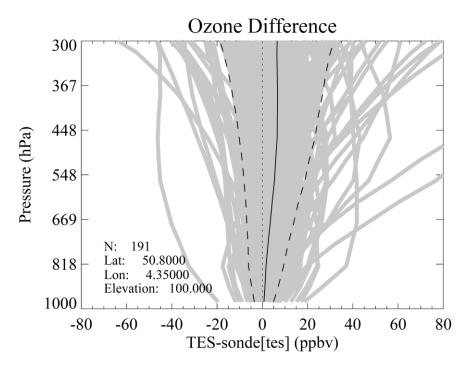
very similar trends @ 3 locations!

Frankfurt), +3.5%/dec for De Bilt

acceleration of Uccle trend? post-1969: +2%/dec



- surface O₃: higher trends at surface than in troposphere: post 1987: +5.5%/dec O3S, +11.5%/dec surface station
- mean surface ozone concentrations increase, but reduction in ozone peak concentrations!



Validation of satellite retrievals

Stratosphere: Aura-MLS

Troposphere: Aura-TES

- within ±5% between 10 and 70 hPa
- mean annual relative differences are very consistent over the different years → no drift between MLS and Uccle O3S
- positive bias of TES in troposphere (>500hPa: ~3 ppbv,<500hPa: ~8 ppbv)
- no temporal trend in the data pairs differences

After taking into account **instrumental artefacts** the longterm (since 1969), high-frequency data set of ozone profiles at Uccle is suitable for

- trend analysis: since mid-1990s increase at all levels (surface, tropo, strato, overall)
- **validation** of ozone profiles from satellites and aircraft: *very good quality of ozonesonde dataset!*
- studies of particular events (e.g. tropopause folds)

More examples are in an ACP publication →

The data are stored at WOUDC (Uccle is WMO station 53) and NDACC and are also available from the authors.

Email: roeland.vanmalderen@meteo.be

Atmos. Chem. Phys., 21, 12385–12411, 2021 https://doi.org/10.5194/acp-21-12385-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License.

Fifty years of balloon-borne ozone profile measurements at Uccle, Belgium: a short history, the scientific relevance, and the achievements in understanding the vertical ozone distribution

Roeland Van Malderen¹, Dirk De Muer¹, Hugo De Backer¹, Deniz Poyraz¹, Willem W. Verstraeten¹, Veerle De Bock¹, Andy W. Delcloo¹, Alexander Mangold¹, Quentin Laffineur¹, Marc Allaart², Frans Fierens³, and Valérie Thouret⁴

Correspondence: Roeland Van Malderen (roeland.vanmalderen@meteo.be)

Received: 16 July 2020 – Discussion started: 2 December 2020

Revised: 31 May 2021 - Accepted: 2 June 2021 - Published: 18 August 2021

https://doi.org/10.5194/acp-21-12385-2021

¹Scientific Division Observations, Royal Meteorological Institute of Belgium, 1180 Uccle (Brussels), Belgium

²Research and Development of Satellite Observations, KNMI, 3730 AE De Bilt, the Netherlands

³Belgian Interregional Environment Agency (IRCEL – CELINE), 1030 Brussels, Belgium

⁴Laboratoire d'Aérologie, Université de Toulouse, CNRS, UPS, 31400 Toulouse, France