Evaluation of the atmospheric water vapor content in the regional climate model ALARO-0 using GNSS observations

Julie Berckmans¹, Roeland Van Malderen¹, Eric Pottiaux², Rosa Pacione³

¹ Royal Meteorological Insitute of Belgium, ² Royal Observatory Belgium, ³ e-GEOS S.p.A. ASI/CGS Matera

17-19 May 2017 EUREF Symposium Wroclaw

Outline

- Introduction
- Data
- Methods
- Results
- Discussion and future research

Research topic

Aim

Evaluation of water vapor in regional climate models using observations from GNSS

Motivation

Lack of validation by regional climate models, new reprocessed dataset ready for climate studies

Relevance

Quality of regional climate model for climate projection

Climate model

ALARO

- Configuration of the ALADIN model (v0)
- Lateral boundary conditions ERA-Interim
- Land surface model SURFEX
- Details:
- Size: 149 x 149 grid points
- Horizontal resolution: 20 km
- Vertical 46 levels: from 17 m to 72 km
- Lambert conformal projection
- Radiation scheme ACRANEB

ALADIN International Team (1997), Gerard et al. (2009), De Troch et al. (2013), Giot et al. (2016), Masson et al. (2003, Masson et al. (2013)

GNSS Observations

EPN tropospheric product repro 2 1996-2014, selection criteria:

- fit within domain
- min. 10 years of data
- min. 15 days per month

100 stations selected

Pacione et al. (2016)

IWV calculation

ZTD observations to IWV

$$IWV = \prod. ZWD = \prod. (ZTD - ZHD)$$

$$\prod = \frac{10^6}{\varrho_W R_v \left(\frac{k_3}{T_m} + k_2'\right)}$$

$$II = \frac{10^6}{\varrho_W R_v \left(\frac{k_3}{T_m} + k_$$

 T_m and P_s from ERA-Interim

Methods

6 / 17

IWV calculation

Model calculation of IWV

- Horizontal interpolation: 4 nearest grid points (weighting: inverse distance)
- Vertical linear interpolation based on Hagemann et al. (2003) but using:
 - Pressure station level using barometric formula
 - T, Sfpres, H from model
 - Standard lapse rate for temperature -0.0065K/m
 - Vertical levels from lowest to +/-20 km

Hagemann et al. (2003)

Model performance

Differences between models and observations

Model performance

Distribution of all data

Distribution of the 95th percentile

9 / 17

Seasonal variability

IWV bias

- Overestimation ERAI, constant
- Larger standard deviation in summer, both ERAI and ALARO
- ALARO performs better than ERAI, except for July-August
- Large underestimation ALARO in July-August

Seasonal variability

ALARO - E-OBS: precipitation bias

- Good performance for May, June, Sep, Oct, Nov
- Large neg. bias August
- Large spread July

Large underestimation of precipitation in August

- + Large underestimation of temperature
- = smaller moister holding capacity
- = explains negative IWV bias.

Spatial variability

 $\begin{aligned} &\mathsf{ALARO} - \mathsf{GNSS} \\ &\mathsf{Large} \ \mathsf{outlier} = \mathsf{SJDV} \end{aligned}$

Spatial variability

Discussion

- $lue{}$ Overestimation ERAI pprox Lucas-Picher et al. (2013)
- Larger standard deviation is expected with regional model compared with ERAI
- Larger standard deviations in summer for both ALARO and ERAI
- Underestimation of regional climate model in summer
- ullet Similar results as in pprox Ning et al. (2013), but based on different GNSS dataset and regional climate model
- Relation precipitation and temperature model bias with IWV bias
- Largest differences ALARO and ERAI in southern Europe = dry model bias
- Latitudinal dependence ≈ Pacione et al. (2016)

Future research

- Closer look at spatial variability
- Closer look at intra-month variability
- Group stations based on similar characteristics
- Diurnal cycle

...

References

Hagemann, S., Chen, C., Clark, D. B., Folwell, S., Gosling, S. N., Haddeland, I., Hanasaki, N., Heinke, J., Ludwig, F., Voss, F., and Wiltshire, A. J.: Climate change impact on available water resources obtained using multiple global climate and hydrology models, Earth Syst. Dynam., 4, 129-144, doi:10.5194/esd-4-129-2013, 2013.

Ning, T., Elgered, G., Willén, U., Johansson, J.M.: Evaluation of the atmospheric water vapor content in a regional climate model using ground-based GPS measurements, J. Geophys. Res., 118, 329-339, doi: 10.1029/2012DJ018053, 2013.

Pacione, R., Araszkiewicz, A., Brockmann, E., and Dousa, J.: EPN-Repro2: A reference GNSS tropospheric data set over Europe, Atmos. Meas. Tech., 10, 1689-1705, doi:10.5194/amt-10-1689-2017, 2017.

J. Berckmans IWV validation Conclusions 16 / 17

Extra: precipitation bias summer

